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Abstract 

Background: QRS duration is a common measure 
linked to conduction abnormalities in heart ventricles.  

Aim: We propose a QRS detector, further able to locate 
QRS onset and offset in one inference step. 

Method: A 3-second window from 12 leads of UHF 
ECG signal (5 kHz) is standardized and processed with the 
UNet network. The output is an array of QRS probabilities, 
further processed with probability and distance criterion, 
allowing us to determine duration and final location of 
QRSs. 

Results: The model was trained on 2,250 ECG 
recordings from the FNUSA-ICRC hospital (Brno, 
Czechia). The model was tested on 5 different datasets: 
FNUSA, a dataset from FNKV hospital (Prague, Czechia), 
and three public datasets (Cipa, Strict LBBB, LUDB). 
Regarding QRS duration, results showed a mean absolute 
error of 13.99 ± 4.29 ms between annotated durations and 
the output of the proposed model. A QRS detection F-score 
was 0.98 ± 0.01. 

Conclusion: Our results indicate high QRS detection 
performance on both spontaneous and paced UHF ECG 
data. We also showed that QRS detection and duration 
could be combined in one deep learning algorithm. 

 
1. Introduction 

QRS duration (QRSd) describes the time difference 
between the start (QRS onset) and end (QRS offset) of 
ventricular depolarization. A healthy, young population 
usually has low QRSd, around 70-80 ms, while patients 
with conduction diseases have QRSd higher than 110 ms.  
Since the QRSd can be easily read from printed ECG, it is 
an essential metric for cardiologists.  

Our former work showed a deep-learning method for 
detecting QRS complexes in ultra-high-frequency (UHF-
ECG) data [1] as a future enhancement to VDI-vision 
software [2]. Here, we further extended the previous model 

to deliver QRS onsets and offsets, allowing QRS detection 
and measurement of QRS duration in one inference step. 

 
2. Data 

In this study, we use two private and three public 
datasets. The method was trained and validated on the data 
(N=3,018) from FNUSA hospital (Brno, Czechia), 
containing 12-lead UHF-ECG signals sampled at 5,000 Hz 
from 78 healthy and 942 CRT subjects (before and after 
implantation). The dataset contains recordings with both 
spontaneous and paced QRSs. A total of 2,250 ECG 
recordings acquired from 780 subjects were used as a 
training set; other 768 ECG records (450 spontaneous and 
318 paced) acquired from 240 subjects were used as a 
validation set.  

The QRS annotation marks were automatically 
generated by the previous QRS detector (UHF-Solver 
software by ISI of the CAS, Brno, Czechia). The duration 
of the QRS complexes was obtained from an automatic 
detector based on wavelet transform [3]. This detector was 
the most accurate in the challenge LBBB Initiative of the 
ISCE 2018 meeting [4], where a reduced subset of 
MADIT-CRT data [5] was used. 

For cross-database tests, we selected four independent 
datasets:  FNKV (by FNKV hospital, Prague, Czechia), 
sampled at 5,000 Hz, contains 298 recordings (278 
stimulated, 20 spontaneous). FNKV subjects were mostly 
treated by His bundle or Parahisian stimulation. 
Annotation marks for QRS complex position were 
manually prepared using SignalPlant software [6]. We also 
selected Cipa [7], LUDB [8], Strict LBBB [4] datasets. 
These datasets contain only records with spontaneous 
rhythm. The boundaries of the QRS complexes were 
determined by certified cardiologists by manual inspection 
of each ECG recording. 

The desired output of the network was constructed from 
QRS annotation marks and QRS duration annotations. 
Thus, for each recording, we built a rectangular signal 
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representing ongoing ventricular depolarization: samples 
between QRS onset and offset were set to 1, and all the 
other samples remained at zero. 
 
Table 1. Datasets for validation (FNUSA) and cross-
database tests (FNKV, Cipa, Strict LBBB, LUDB).  

Database Sampling 
frequency [Hz] 

Rhythm Recordings 

FNUSA 5,000 
Spont. 450 
Paced 318 

FNKV 5,000 
Spont. 20 
Paced 278 

CIPA 1,000 Spont. 5,749 

Strict 
LBBB 1,000 Spont. 602 

LUDB 500 Spont. 200 

 
3. Method 

For QRS onset and offset detection, we selected a deep 
learning model with the Unet architecture [9]. The neural 
network processes a 12-lead ECG signal with an input 
window of 3 seconds, meaning the input array size is 
12x15,000 (12 leads x 5,000 Hz times 3 seconds). 

The output of the network has the same length as the 
input. For each sample, we receive the probabilities of 
QRS complex occurrences. The output array has a size of 
2x15,000, which represents the probability of 
QRS/background from which the QRS onset and offset can 
be further obtained. 

 
3.1. Preprocessing 

The model is intended to be used with UHF-ECG data. 
Therefore, each signal was first resampled to a frequency 
of 5,000 Hz (if sampling differed) and then standardized 
using a z-score. 

 
3.2.  Neural network architecture 

Compared to our previous UNet network architecture 
for UHF-ECG [1], we use 1D convolutional layers with 
different hyperparameters (kernel size = 12, stride = 6;5). 
After each convolutional layer, a 1D batch normalization 
layer followed by a ReLU activation function and max 
pooling layer was used. The output of the network is 
passed through a softmax activation function to produce 
final QRS probabilities. 

 

3.3.  Model training 

The model has been trained for 40 epochs, using Adam 
optimization with a learning rate of 0.0001. A weighted 
cross-entropy loss function was used due to imbalanced 
output classes. We used a graphic-processing unit (GPU) 
with “Compute Unified Device Architecture” (CUDA) for 
training (GeForce RTX 2080 Ti). 
 
3.4.  Postprocessing 

The output of the network is an array of QRS 
probabilities. To obtain the final QRS positions and thus 
their durations, the output must be post-processed. 
Segments of the output signal are considered QRS if their 
probability is higher than 0.7 and their duration is at least 
50 ms (empirically determined on a validation FNUSA 
dataset). If two consecutive QRS complexes have a 
distance of less than 60 ms, they are combined into a single 
QRS complex segment. The initial and final 100 ms of the 
utilized 3s signal segment are not included in the final QRS 
duration and detection result calculations. 
 
4. Results 

The performance of the model on the validation dataset 
(FNUSA) and the test datasets is summarized in Table 2. 
Results for the datasets containing spontaneous (Spont.) 
and paced data are reported separately. 

To verify the ability of the model to estimate QRS 
duration, mean absolute error (MAE), mean error (ME) 
between annotation and model output and standard 
deviation of the mean error (STD) were used. We validated 
the results of QRS detection using the F-score. 

 
Table 2.  Results of QRS duration estimation (MAE, ME, 
STD) and QRS detection (F-score).  

Data Rhyth
m 

MAE 
[ms] 

ME 
[ms] 

STD 
[ms] 

F-
score 

FNUSA Spont 8.64 6.22 11.15 99.42 
Paced 20.65 -13.41 12.17 97.59 

FNKV Spont 14.57 -7.51 15.28 98.53 
Paced 19.52 5.65 18.78 97.39 

CIPA Spont 9.40 -7.93 8.04 - 
S. LBBB Spont 12.37 0.28 16.42 - 
LUDB Spont 12.78 0.04 11.46 98.31 

 
Results for QRS duration for the FNKV dataset are 

reported only for QRS complexes belonging to the major 
morphological group because annotations were not 
generated for other groups. 
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Figure 1. Three examples of network input and output; spontaneous ECG (top) and two different types (middle, bottom) 
of stimulated ECG. Black curves refer to ECG signals, blue rectangular curves refer to model output and magenta curves 

refer to annotation marks.   
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QRS complex detection achieves an average test F-
score of 0.98 ± 0.01; QRS duration achieves an average 
MAE of 13.99 ± 4.29 ms between the annotated durations 
and the output of the algorithm. We could not test QRS 
detection performance on CIPA and Strict LBBB datasets 
since they contain only a single averaged shape. 

 
5. Discussion 

The results of the proposed deep learning model for 
QRS detection were compared with our previous work on 
a test database from FNKV [1]. The new model performs 
slightly better (F-score of 98.53% for spontaneous and 
97.39% for paced QRSs) than our previous solution for 
QRS detection (F-score of 97.30% for spontaneous and 
97.25% for paced QRSs). The difference from the previous 
architecture is in the size of the kernels of the convolutional 
layers. More importantly, it differs in the size of the 
annotation “rectangle,” which forms a signal that a model 
is trained to produce (Fig1, blue signal). These rectangles 
are no longer of a fixed duration of 10 ms; their size 
corresponds to the QRS duration of the associated ECG 
recording. 

Regarding the QRS duration, we obtained an average 
MAE of 13.99 ± 4.29 ms across all datasets. The results of 
our model on the Strict LBBB database (12.78 ± 11.46 ms) 
were compared with a publicly available wavelet 
transform-based algorithm (9.80 ± 7.8 ms) [3]. Our model 
shows worse performance on Strict LBBB data. However, 
the presented algorithm was trained on the FNUSA dataset, 
and Strict LBBB data were used as an unseen, cross-
database test. This contrasts with the compared algorithm 
[3], which used a public part of Strict LBBB data for 
training and, furthermore, it reports QRS duration 
performance on the same - training - data. 

 
6.  Conclusion 

In this study, we presented a deep learning algorithm for 
QRS detection, focusing on its onset and offset and thus 
delivering the QRS duration in a single inference step. 
Furthermore, our results showed that although we brought 
new functionality to the QRS detector, we also improved 
its detection F-score. The presented model will be 
considered for implementation in future versions of VDI-
vision software [2] for real-time UHF-ECG analysis. 
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